20世紀70年代列托霍夫(V.S.Letokhov)以及其他蘇聯物理學家和美國荷爾德爾(Holmdel)貝爾實驗室阿斯金(A.Ashkin)。小組的物理學家在理論上和實驗上對光子與中性原子的相互作用進行了重要的早期工作。其中有一項是他們建議用聚焦激光束使原子束彎折和聚焦,從而達到陷俘原子的目的。他們的工作導致了“光學鑷子”的發展,光學鑷子可用于操縱活細胞和其它微小物體。
漢胥(T.W.Hānsch)和肖洛(A.L.Schawlow)1975年首先建議用相向傳播的激光束使中性原子冷卻。與此同時,外蘭德(D.J.Wineland)和德默爾特(H.G.Dehmelt)對于離子陷阱中的離子也提出過類似的建議。漢斯和肖洛的方法是:把激光束調諧到略低于原子的諧振躍遷頻率,利用多普勒原理就可使中性原子冷卻。
2.激光為什么能使原子減速?
光可以看成是一束粒子流,這種粒子就叫光子。光子一般來說是沒有質量的。但是具有一定的動量。光子撞到原子上可以把它的動量轉移給那個原子。這種情況要發生,必須是光子有恰好的能量,或者可以這樣說,光必須有恰好的頻率或顏色。這是因為光子的能量正比于光的頻率,而光的頻率又決定光的顏色。因此組成紅光的光子比起組成藍光的光子能量要低些。是什么決定光子應有多大能量才能對原子起作用呢?是原子的內部結構(能級)。原子處于一定的能級狀態,能級的躍遷就是原子吸收和發射光子的過程。原子的能級是一定的,它吸收和發射光子的頻率也是一定的。如果正在行進中的原子被迎面而來的激光照射,只要激光的頻率和原子的固有頻率一致,就會引起原子的躍遷,原子會吸收迎面而來的光子而減小動量。與此同時,原子又會因躍遷而發射同樣的光子,不過它發射的光子是朝著四面八方的,因此,實際效果是原子的動量每碰撞一次就減小一點,直至最低值。動量和速度成正比,動量越小,速度也越小。因此所謂激光冷卻,實際上就是在激光的作用下使原子減速。