LED是一種新型固態光源,自問世以來受到了極大的關注。它的發光機理是靠PN結中的電子在能帶間躍遷產生光能。在外電場的作用下,電子與空穴的輻 射復合發生電致作用,一部分能量轉化為光能,無輻射復合產生的晶格震蕩將其余能量轉化為熱能。
目前LED的發光效率僅20%~30%,其余能量大多轉化為熱能,大量的熱能需要及時地散發出去,否則將會使LED的壽命減少,甚至永久性失效。所 以,在LED快速發展的同時,人們也不斷進行著LED散熱新技術的研究。
金屬鋁材憑借著密度小、熱導率高、表面處理技術成熟的優勢,一直占據著LED照明主體材料的市場。隨著人們對安全性能要求的提高,鋁材的導電性成為 其一道致命的傷疤,為了提高LED照明燈具(下文簡稱為LED燈具)的使用安全性,電絕緣材料引起了人們的重視。
開始嶄露頭角的電絕緣材料有陶瓷材料和高熱導塑料。人類對陶瓷材料的使用已有幾千年了,現代技術制備的陶瓷材料有著絕緣性好、熱導率高、紅外輻射率 大、膨脹系數低的特點,完全可以成為LED照明的新材料。目前,陶瓷材料主要用于LED封裝芯片的熱沉材料、電路基板材料和燈具散熱器材料。高熱導塑料憑 借著其優良的電絕緣性和低密度值,高調地進入了散熱材料市場,現階段由于價格高,應用率不大。本文主要討論陶瓷材料在LED照明中的應用技術。
1 陶瓷材料的傳熱機理
陶瓷屬于非金屬材料,晶體結構中沒有自由電子,具有優秀的絕緣性能。它的傳熱屬于聲子導熱機理,當晶格完整無缺陷時,聲子的平均自由程越大,熱導率 就越高。理論表明,陶瓷晶體材料的最大導熱系數可高達320W/mK。
一般認為,在影響陶瓷材料導熱率的諸多因素中,結構缺陷是主要的影響因素。在燒結的過程中,氧雜質進入陶瓷晶格中,伴隨著空位、位錯、反相疇界等結 構缺陷,顯著地降低了聲子的平均自由程,導致熱導率降低。現代陶瓷技術通過生成第二相,把氧固定在晶界上,減少了氧雜質進入晶格的可能性,隨著晶界處的氧 濃度大大降低,晶粒內部的氧自發擴散到晶界處,使晶粒基體內部的氧含量降低,缺陷的數量和種類減少,從而降低聲子散射幾率,增加聲子的平均自由程。由于制 備技術的不同,陶瓷材料的熱導率也不一樣。
燈具型號為GU10,外形尺寸49.5mm×50mm,鰭片散熱器和燈座均采用95陶瓷材料,并通過螺紋連接。
燈具安裝三顆Handson(漢德森)LED光源,內置恒流驅動電源,總消耗功率約3.55W,采用透鏡配光,總光通量約150lm。
[$page] 由于LED的結溫不能直接測得,常采用間接測試法,目前主要有2種:
①電參數法:LED隨著結溫的上升,兩端電壓呈線性降低,比例系數K的典型值為4mV/℃,結溫可按式(1)進行計算;②熱電偶間接測試法:通過測 試LED焊腳的溫度sp間接得到結溫值,此時結溫可按式(2)進行計算。
式中:為結溫,0為初始溫度,K為比例系數,△F為電壓變化的絕對值。
式中:為結溫,sp為LED焊腳的溫度,th為PN結到焊腳的平均熱阻,為芯片功率。
本次進行溫度測試的方法為熱電偶測試法。LED焊腳測試點為兩處,燈體散熱器測試點為三處,環境溫度采用兩根熱電偶測試。
3.2 陶瓷LED燈具和鋁制壓鑄LED燈具的計算機仿真
為了研究和設計陶瓷LED燈具,我們借助計算機軟件進行仿真分析。本次采用的流場分析軟件為Flo-EFD(簡稱 EFD,EngineeringFluidDynamics),EFD為NIKA的旗艦產品,主要用于汽車、航空航天、機械、船舶、電子通訊、醫療器械、 能源化工、暖通、流體控制設備、LED半導體行業等。軟件可進行各種LED封裝產品、航空航天燈、各種節能燈、LED發光管、車用燈具、顯示屏等的熱分 析。
為便于與實驗測試進行比較,計算機仿真分析時,將環境溫度設為15℃,得到的溫度分布如圖5所示(為便于查看,隱藏了透鏡及其固定部分)。為了比較 95陶瓷燈具與鋁制壓鑄燈具的熱學性能,通過計算機仿真得到的溫度分布(燈具散熱器材料為鋁合金ADC12,燈座為PBT塑料,其余參數不變。)
3.3 結果分析
陶瓷燈具的燈座為95陶瓷材料(鋁制壓鑄燈具的燈座為PBT塑料),各部件得到了充分的利用。實驗測試時,1.0h基本達到熱平衡,環境溫度的算術 平均值約14.4℃,將實驗測試和計算機仿真的溫度分布值進行分析比較。
計算機分析結果顯示,自然對流情況下,95陶瓷燈具的熱學性能不亞于鋁制壓鑄燈具,陶瓷燈具可以充分利用各個零部件的幾何特征,所以燈具的整體溫度 降低到了較低水平。
4 陶瓷材料用于LED照明燈具的前景
陶瓷的使用具有悠久的歷史,現代工藝制備的陶瓷材料導熱率較高,空氣自然對流下,完全可以充當LED照明燈具的散熱材料。氮化鋁陶瓷可以直接作為封 裝晶架或線路層;氧化鋁陶瓷價格便宜,燒結技術成熟,可釉成不同顏色,由于其電絕緣性能優良,并耐酸堿性,受到很多客戶的青睞。但是,陶瓷材料并不是完美 無瑕的,陶瓷散熱器鰭片不能太薄(厚度≥1.5mm),密度稍大(約為鋁的1.5倍),中高應力下會產生裂紋,無釉表面容易污染等。
總的來說,陶瓷材料用于LED的前景良好,特別適于體積較小的照明燈具。