目前,國內電網部分110kV變電站沒有真正實現雙電源供電。即不是直接從220kV變電站引來,而是多座變電站串接在兩座220kV變電站中間,簡稱為“手拉手”式閉環連線開環運行結構。正常時,兩端電源供電,中間的兩座變電站間聯絡斷路器斷開。如下圖1結構。K1~K4,K6~K10閉合,K5斷開,假設左側220kV變電站停電,變電站1內的備自投無法控制K5,導致變電站1,左側220kV變電站全站停電。如何解決這一問題,即檢測、判斷故障,通過何種方式傳遞、變換站間信息,以便隔離故障,提高供電可靠性,一直是一個難題。筆者針對這個問題,聯合邯鄲市德普電力自動化設備有限公司,上海安科瑞電氣有限公司研制了“基于光纖通信交互式遠方自投裝置”,很好的解決了這一問題。
1、高壓電網裝設該裝置的背景和意義
近階段,河北電網部分變電站采用“手拉手”式結構,不能完全實現真正意義的雙電源供電,當系統發生故障時,經常造成220kV,110kV變電站全站失壓,造成負荷損失,極大地影響了我省部分地區的供電可靠性,但由于電網發展資金的限制,不可能在短時間內通過改善電網結構從根本上解決該問題,這種情況下,需要解決該問題,只能靠安裝安全自動裝置來補救,即基于光纖通信交互式遠方自投裝置。
2、幾種通信方式的比較
2.1、TCP/IP以太網
以太網通信的遠方備自投方案,是應用了計算機網絡通信技術,通過建立以太網內的TCP/IP協議完成裝置間的數據通信,從而實現在局域網內備自投之間的相互通信。每個站的備自投裝置都需安裝發送和接收終端,各有自己的IP地址。這種方式的特點是:必須建立變電站之間的局域網,還需設計開發專用的備自投發送及接收終端,以太網服務器;通信易受干擾,通信交換信息時間過長,安全性能差,維護難度較大。
2.2、GPRS技術
GPRS技術的特點是通過點對點或者中心對多點以及多點之間的無線IP連接,數據以“編碼”的形式通過GPRS信道進行通信,利用其傳輸運行狀態信息、故障信息和跳合閘命令信息。這種方式的特點是覆蓋廣,傳輸速度快,可長期在線運行。不足的是:安全性能差,信息交換實時性無法控制,安全性能差,整套設備投資較大。
2.3、光纖通信
目前,各個110kV變電站之間基本都實現了光纖通信,其光纖通信傳輸運行狀態信息、故障信息和跳合閘命令信息,具有無誤差,傳輸速度快,傳輸容量大,接口簡便靈活,轉換方便,基本不受外界電磁干擾等優勢,是最可靠的通信通信方式。在此基礎上可實現遠方備自投裝置的任何通信需求。
這種方案投資小,見效快,安全準確,基本無干擾,所以是目前實現遠方備自投的最佳通信方案。
3、備自投的軟件功能設計
3.1、運行方式分析
針對圖1中的問題,裝設的該裝置控制的相鄰兩個變電站四個開關的位置,圖2為裝置裝設圖。
見圖2,根據電力系統運行規則,四個斷路器至少有一個斷路器處于分閘狀態,分析出有運行價值的運行方式,如下所列:
方式一:1DL、3DL、4DL閉合,2DL斷開。
方式二:1DL、2DL、4DL閉合,3DL斷開。
方式三:2DL、3DL、4DL閉合,1DL斷開。
方式四:1DL、2DL、3DL閉合,4DL斷開。
方式五:1DL、4DL閉合,2DL、3DL斷開。
根據功耗的要求,最理想的運行方式為方式五,聯絡線不存在損耗,但是系統以方式五運行時,線路3不帶電,線路3的設備包括電纜、線桿易被盜,長時間不帶電設備會老化;另外如果備自投動作,線路充電時間也很長,電源切換的時間也加長,因此一般不考慮。正常運行時選擇方式一、方式二,電源1給A站供電,電源2給B站供電。如果電源1或者電源2故障停電,自動轉向方式三或方式四。
[$page] 方式三或方式四時,供電都被電源一或電源二承擔,這點也不符合電力系統要求,只能作為臨時供電模式。
2.3、系統正常運行方式下的特點
系統在正常運行方式下的特點是:三條線路均帶電;有且僅有1個開關斷開,處在斷開狀態的開關兩側均帶電;4段母線均帶電;當某有一線路發生故障或失電時,需將4段母線恢復帶電狀態;當母線或開關發生故障時,由相關保護裝置切除故障設備。
2.4、變電站間遠方備自投的要求
系統在方式一(方式二)運行時,假設電源