電力電子電路的實(shí)際運(yùn)行表明,大多數(shù)故障表現(xiàn)為功率開(kāi)關(guān)器件的損壞,其中以功率開(kāi)關(guān)器件的開(kāi)路和直通最為常見(jiàn)。電力電子電路故障診斷與一般的模擬電路、數(shù)字電路的故障診斷存在較大差別,由于電力電子器件過(guò)載能力小,損壞速度快,其故障信息僅存在于發(fā)生故障到停電之前數(shù)十毫秒之內(nèi),因此,需要實(shí)時(shí)監(jiān)視、在線診斷;另外電力電子電路的功率已達(dá)數(shù)千千瓦,模擬電路、數(shù)字電路診斷中采用的改變輸入看輸出的方法不再適用,只能以輸出波形來(lái)診斷電力電子電路是否有故障及有何種故障。
故障診斷的關(guān)鍵是提取故障的特征。故障特征是指反映故障征兆的信號(hào)經(jīng)過(guò)加工處理后所得的反映設(shè)備與系統(tǒng)的故障種類、部位與程度的綜合量。故障診斷方法按提取特征的方法的區(qū)別,可分為譜分析方法、基于動(dòng)態(tài)系統(tǒng)數(shù)學(xué)模型的方法、采用模式識(shí)別的方法、基于神經(jīng)網(wǎng)絡(luò)的方法、專家系統(tǒng)的方法、小波變換的方法和利用遺傳算法等。這些方法將在下文具體介紹。
一、故障診斷中的譜分析方法
在故障診斷中比較常用的信號(hào)處理方法是譜分析。常用傅里葉譜、沃爾什譜,另外還有濾波、相關(guān)分析等。譜分析的目的:信號(hào)中包含噪聲,為了提取特征;故障信號(hào)的時(shí)域波形不能清楚地反映故障的特征。而電力電子電路中包含故障信息的關(guān)鍵點(diǎn)信號(hào)通常具有周期性,因此可以用傅里葉變換將時(shí)域中的故障波形變換到頻域,以突出故障特征,實(shí)現(xiàn)故障診斷。
傅里葉變換是將某一周期函數(shù)分解成各種頻率的正弦分量,類似地,沃爾什變換是將某一函數(shù)分解成一組沃爾什函數(shù)分量。自適應(yīng)濾波是一種數(shù)字信號(hào)的處理統(tǒng)計(jì)方法,它不需要知道信號(hào)一二階的先驗(yàn)統(tǒng)計(jì)知識(shí),直接利用觀測(cè)資料,通過(guò)運(yùn)算改變濾波器的某些參數(shù),而使自適應(yīng)濾波器的輸出能自動(dòng)跟蹤信號(hào)特性的變化。在電力電子系統(tǒng)故障診斷中,可以用自適應(yīng)處理來(lái)實(shí)現(xiàn)噪聲抵消,譜線增強(qiáng)等功能,從噪聲背景下提取故障特征,從而實(shí)現(xiàn)準(zhǔn)確的診斷。
二、參數(shù)模型與故障診斷
如果系統(tǒng)的數(shù)學(xué)模型是已知的,就可以通過(guò)測(cè)量,估計(jì)系統(tǒng)的狀態(tài)和參數(shù),確定狀態(tài)變量和系統(tǒng)參量是否變化。采用基于系統(tǒng)數(shù)學(xué)模型的故障診斷方法,可以從較少的測(cè)量點(diǎn)去估計(jì)系統(tǒng)的多個(gè)狀態(tài)量或系統(tǒng)參數(shù),從而實(shí)現(xiàn)故障診斷。
進(jìn)一步又可以分為檢測(cè)濾波器方法、狀態(tài)估計(jì)法和參數(shù)辨識(shí)方法三種。
1、檢測(cè)濾波器方法
它將部件、執(zhí)行機(jī)構(gòu)和傳感器的故障的輸出方向分別固定在特定的方向或平面上。
2、狀態(tài)估計(jì)法
通過(guò)監(jiān)測(cè)系統(tǒng)的狀態(tài)變化,也能反映由系統(tǒng)參數(shù)變化引起的故障,并對(duì)故障進(jìn)行診斷。與一般的狀態(tài)估計(jì)不同,在進(jìn)行故障診斷時(shí),并不是去估計(jì)未知的狀態(tài)信息,而是借助觀測(cè)器或卡爾曼濾波器去重構(gòu)系統(tǒng)的輸出,以便取得系統(tǒng)輸出的估計(jì)值。這個(gè)估計(jì)值與實(shí)際輸出值之差就叫量測(cè)殘差。殘差中含有大量的系統(tǒng)內(nèi)部變化的信息,因此可以作為故障診斷的依據(jù)。狀態(tài)估計(jì)法的優(yōu)點(diǎn)是在線計(jì)算量小,診斷速度快。
3、參數(shù)辨識(shí)方法
實(shí)時(shí)辨識(shí)出系統(tǒng)模型的參數(shù),與正常時(shí)模型的參數(shù)比較,確定故障。常用的有最小二乘法。
三、模式識(shí)別在故障診斷中的應(yīng)用
故障的模式識(shí)別就是從那些反映系統(tǒng)的信息中抽取出反映故障的特征,并根據(jù)這些特征的不同屬性,對(duì)故障進(jìn)行分類。用模式識(shí)別方法進(jìn)行故障診斷,是根據(jù)樣本的數(shù)學(xué)特征來(lái)進(jìn)行的,因此它不需要精確的數(shù)學(xué)模型。對(duì)于一些被診斷對(duì)象數(shù)學(xué)模型過(guò)于復(fù)雜、不易求解的問(wèn)題,模式識(shí)別方法也是適用的。另外,在對(duì)工業(yè)系統(tǒng)的故障診斷中應(yīng)盡量利用非數(shù)學(xué)(包括物理和結(jié)構(gòu))方面的特征,設(shè)計(jì)出各種各樣的特征提取器,這樣將有利于利用對(duì)已有系統(tǒng)的知識(shí),有利于減少計(jì)算工作量。由于特征的選擇和提取與待識(shí)別的模式緊密相關(guān),故很難有某種泛泛的規(guī)律可循。目前常用的方法有:最小距離分類法,Bayes分類法,F(xiàn)isher判別法,從參數(shù)模型求特征,用K-L變換提取特征等。
四、基于神經(jīng)網(wǎng)絡(luò)的故障診斷方法
利用神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)、自歸納能力,經(jīng)過(guò)一定的訓(xùn)練,建立起故障信號(hào)與故障分類之間的映像關(guān)系。利用學(xué)習(xí)后的神經(jīng)網(wǎng)絡(luò),實(shí)現(xiàn)故障診斷。神經(jīng)網(wǎng)絡(luò)是由大量的神經(jīng)元廣泛互連而成的網(wǎng)絡(luò),這里以BP網(wǎng)絡(luò)為例加以介紹。BP網(wǎng)絡(luò)是單向傳播的多層前向網(wǎng)絡(luò),它由輸入層、中間層和輸出層組成,中間層可有若干層,每一層的神經(jīng)元只接受前一層神經(jīng)元的輸出。BP網(wǎng)絡(luò)中沒(méi)有反饋,同一層的節(jié)點(diǎn)之間沒(méi)有耦合,每一層的節(jié)點(diǎn)只影響下一層節(jié)點(diǎn)的輸入。
[$page] BP網(wǎng)絡(luò)一般采取的學(xué)習(xí)算法是:網(wǎng)絡(luò)的輸出和希望的輸出進(jìn)行比較,然后根據(jù)兩者之間的差調(diào)整網(wǎng)絡(luò)的權(quán)值,最終使誤差變?yōu)樽钚。?dāng)電力電子電路發(fā)生故障時(shí),如果能夠利用神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)能力,使故障波形與故障原因之間的關(guān)系通過(guò)神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)后保存在其結(jié)構(gòu)和權(quán)中,然后將學(xué)習(xí)好的神經(jīng)網(wǎng)絡(luò)用于故障診斷,神經(jīng)網(wǎng)絡(luò)就可以通